一个关于sin的有趣的积分

Created at 2018-01-28 Updated at 2018-02-13 Category math / calculus Tag math / calculus

Solving the integral

$$\int_{0}^{+\infty}\frac{\sin x}{x}dx,$$

One easiest way to get this integral is to evaluate the following improper integral with parameter \(a\):

$$ I(a)=\int_0^\infty e^{-ax}\frac{\sin x}{x}dx, a\ge 0.$$

It is easy to see

$$I’(a)=-\int_0^\infty e^{-ax}\sin xdx=\frac{e^{-ax}}{a^2+1}(a\sin x+\cos x)\big|_0^\infty=-\frac{1}{a^2+1}.$$

Thus

$$I(\infty)-I(0)=-\int_0^\infty\frac{1}{a^2+1}da=-\frac{\pi}{2}.$$

Note \(I(\infty)=0\) and hence \(I(0)=\frac{\pi}{2}\).

$$I’(a) = \int_{0}^{\infty}-e^{-ax} \sin xdx $$

$$= \int_{0}^{\infty}e^{-ax} d\cos x $$

$$= e^{-ax}\cos x - -\int_{0}^{\infty}e^{-ax}\cos xdx$$

$$= \left[e^{-ax}\cos x + a\left[e^{-ax}\sin x + \int_{0}^{\infty}ae^{-ax}\sin xdx\right] \right]^{\infty}_0 $$

$$= \left[ e^{-ax}\cos x + ae^{-ax}\sin x - a^2 I’(a) \right]^{\infty}_0 $$

$$\therefore I’(a)= \frac{e^{-ax}}{1+a^2}(a\sin x + \cos x)\big|_0^\infty$$

Table of Content

Site by Xie Ruicheng using Hexo & Random

Every nountain is unclimbable until someone climbs it. So every ship is unsinkable until it sinks.

Hide